
3.4 The Diabetes Connection Study Guide by Hisrich

3.4.a. What is a feedback mechanism?

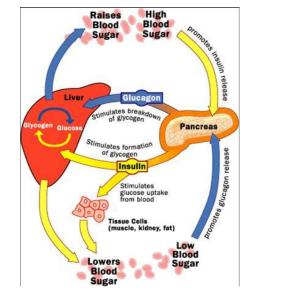
A feedback mechanism is just when one thing happens in response to another thing—sort of like a chain reaction.

3.4.b. In what ways do negative feedback and positive feedback differ?

3.4.c. Why is having too much sugar in blood bad?

3.4. d. What might happen to cells that are exposed to high concentrations of sugar?

Effects on cells	Blood effects	
Too much sugar in blood means not enough is reaching cells. Cells use sugar (glucose) to make energy (ATP). If the sugar can't get in, the person lacks energy and will experience fatigue. For homeostasis, the solutions that make up blood and cells should be isotonic (same concentration in the solutions) In a diabetic, a concentration gradient develops because the blood becomes hypertonic (greater concentration of solute) & the cells hypotonic (less concentration of solute) & osmosis draws the solvent (water) out of cells and into the bloodstream, dehydrating cells ⁽³⁾ . That leads to constant hunger & thirst that isn't properly satiated with food/water intake	The sugar thickens the blood, causing less flow. That stresses the cardiovascular system & causes high blood pressure, blood clots, poor circulation (often resulting in blindness and/or need for amputation of toes or even limbs).	


3.4.e. What is the role of insulin in our body? 3.4. f. How does insulin accomplish its job?

Insulin is a **hormone** (particular kind of protein) produced by the pancreas. It's job is to let sugar into cells. In a non-diabetic, **insulin** maintains **homeostasis** of blood sugar levels, but in a diabetic, **homeostasis** is not maintained, causing lots of problems!

How insulin works

- Insulin opens the door for glucose to enter the cells.
- It stimulates the storing of glucose in the liver (as glycogen).
- ③ It stimulates the development of fat from excess carbohydrates.
- And it stimulates the development of protein compounds in the body.

Cells are all "locked" in a way and only let certain materials in. **Insulin** acts like a key, "unlocking" cells to let in glucose whenever levels in the blood get high. It works via a **negative feedback** loop (see below).

3.4.g. What is diabetes? 3.4.h. How do Type I and Type II diabetes differ?

Type 1 Diabetes	Both	Type 2 Diabetes
Usually occurs in children (used to be called "Juvenile Diabetes") An autoimmune disorder, in which	Sugar cannot get into cells Result in hyperglycemia (high blood sugar) & dehydration of cells	Usually occurs in adults (used to be called "Adult Onset"), especially those who are overweight
the immune system attacks the insulin-producing cells of the pancreas	Can lead to cardiovascular problems (high blood pressure, heart attacks)	An endocrine disorder—caused be a person's lifestyle habits making cells reject insulin
Sugar can't get into cells because the pancreas has stopped producing insulin	Can lead to blindness Can cause need for amputation of toes or even limbs, due to poor	Sugar can't get into cells because they've become " insulin -resistant" & no longer recognize it as the "key"
	circulation.	Reversible IF lifestyle changes are made.

3.4.i. What are the current treatments for Type I and Type II diabetes?

Type 1 Diabetes	Type 2 Diabetes
Only treatment is insulin —without it there is certain death. Patients have option of injections or an insulin pump.	Not typically treated with insulin —usually treated with lifestyle changes (exercise, limiting carbohydrates, etc) & oral medications. Insulin may become necessary over time if condition worsens (by then it's considered irreversible because of long-term damage to the pancreas.