Graphing Review

Save this for the entire year!

Introduction

Line graphs compare two variables. Each variable is plotted along an axis. A line graph has a vertical axis and a horizontal axis. For example, if you wanted to graph the height of a ball after you have thrown it, you would put time along the horizontal, or x-axis, and height along the vertical, or y-axis.

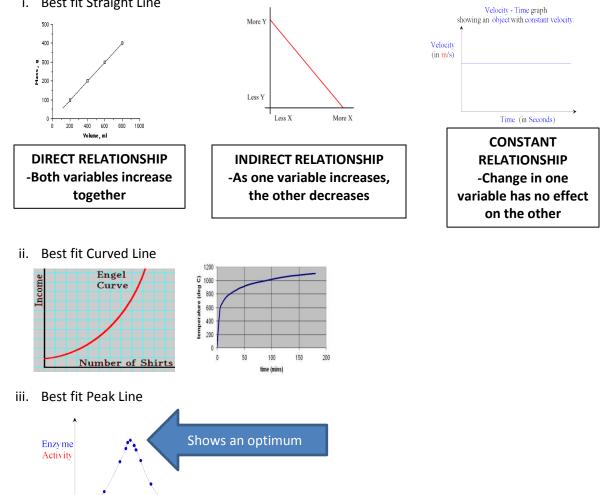
Line graphs are important in science for several reasons such as:

- showing specific values of data. If one variable is known, the other can be determined.
- showing trends and relationships in data clearly. They visibly depict how one variable is affected by the other as it increases or decreases.
- allowing the viewer to make predictions within recorded data, called **interpolation**, and to make predictions about data not yet recorded, called **extrapolation**.

Interpolation vs. Extrapolation

Determine which of the examples below is interpolation and which is extrapolation. Explain why.

- 1. The value of Sarah's car in 2004 was \$17,500.
- 2. The value of Sarah's car in 2008 was \$1,900. _____


How to Construct a Line Graph:

- 1. Identify the Variables & Label the Axes
 - a. <u>Independent Variable</u> factor that is varied in an experiment and specifically controlled by the experimenter
 - i. Label along the x-axis (horizontal) include units
 - ii. Typically found on the left side of a data table
 - b. <u>Dependent Variable</u> factor that is measured in an experiment and will change as a result of the independent variable
 - i. Label along the y-axis (vertical) include units
 - ii. Typically found on the right side of a data table

Independent vs. Dependent Variable Practice

- A student wanted to observe how changing the temperature of the aquarium water would affect the breathing rate of his goldfish.
 - What is the independent variable? ______
 - What is the dependent variable? _____
- A student wanted to determine how tall corn would grow if different types of fertilizer were used.
 - What is the independent variable? ______
 - What is the dependent variable? ______
- 2. Determine the Graph Scale
 - a. Determine the magnitude (numeric value) of each variable
 - b. Establish a scale that best fits the range of each variable
 - c. Spread the graph to use the MOST available space (use at least ¾ of the graph)
 - d. Be consistent throughout each axes' scale
- 3. Plot the data points
 - a. Plot each data value on the graph with a dot
 - b. If multiple sets of data are being plotted, use different colored lines and include a key

- 4. Draw the Graph
 - a. DO NOT connect the dots unless specifically told to do so
 - b. Draw one of the following types of graphs:
 - i. Best fit Straight Line

- 5. Title the Graph
 - a. Titles are used to clearly portray what the graph is about so be specific.

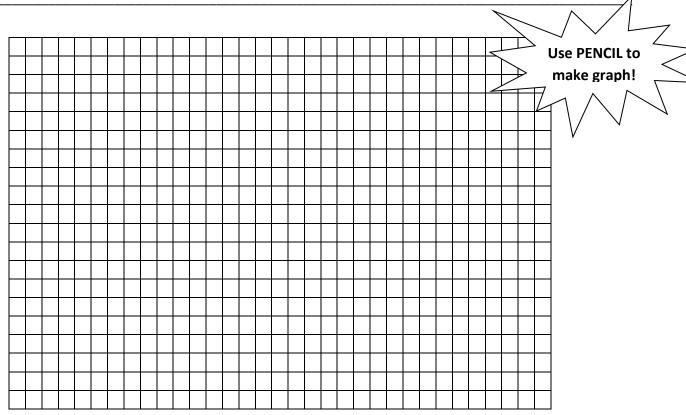
10 20 30 40 50 60 70 Temperature °C

b. Titles are typically written as "Y-axis variable" vs. "X-axis variable" and are written at the top of the graph.

> Example: Think back to the goldfish experiment . The appropriate title for that graph would be The Breathing Rate of Goldfish vs. The Temperature of Water.

Graphing information can be found in your textbook on pages 1099 – 1101.

Graphing Practice


Practice Problem #1

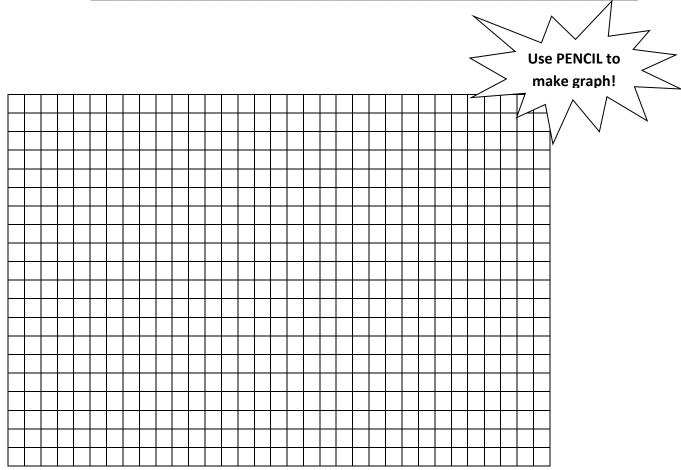
Background: The thickness of the annual rings indicates what type of environmental situation was occurring the time of the tree's development. A thin ring usually indicates a rough period of development such as lack of water, forest fires, or insect infestation. On the other hand, a thick ring means a prosperous period of development. Use the information from the data table below to create a proper scientific graph and to answer the corresponding questions.

Age of Trees (in years)	Average Thickness of Annual Rings in Forest A (millimeters)	Average Thickness of Annual Rings in Forest B (millimeters)							
10	20	24							
20	24	28							
30	30	35							
35	34	38							
50	41	45							
60	46	51							

1. What is the dependent variable? ______

- 2. What is the independent variable? _
- 3. What was the average thickness of annual rings for 40 year old trees in Forest A? ____
- 4. What is it called when you make predictions within given data, such as made in question #3?
- 5. What was the mean thickness of annual rings for all trees found in Forest B?_____
- 6. Based on the data shown, what can be concluded about the comparative health of Forest A & B?
- 7. What type of relationship (constant, direct, or indirect) exists between the age of trees and the average thickness of the tree's rings? Explain.

Smith Biology


Practice Problem #2

Background: Clams were placed into various temperatures of water. Use the information in the data table below in order to create a proper scientific graph and to answer the corresponding questions.

Water Temperature (°C)	Number of Developing Clams									
15	72									
20	92									
25	120									
30	140									
35	99									
40	72									
45	36									
50	0									

1. What is the dependent variable? ______

- 2. What is the independent variable?
- 3. What is the optimum temperature for clam development? _____
- 4. What is the mean number of clams per sample? ______
- 5. Approximately how many clams would be developing in 10 degree Celsius water?
- 6. What is it called when you make predictions about data not yet recorded, such as the prediction we made in question number 5? ______

Practice Problem #3

Background: Natalie sets out to run 15 kilometers. Every 30 minutes she checked her pedometer to determine how far she had run. Use the data below to create a proper scientific graph and to answer the corresponding questions.

Time (minutes)	Total Distance (km)									
0	0									
30	6.8									
60	10.1									
90	12									
120	13.3									
150	15									

- 1. What is the dependent variable? ______
- 2. What is the independent variable?
- 3. How many kilometers had Natalie run after 40 minutes?

			μe						, -														\ 7	√ Us m	e PENCIL to ake graph!
																									\/ ∨
																									l V
L	I	I	I	I	I	I	I	I	I	I	I	I		I	I	I	l			L					1

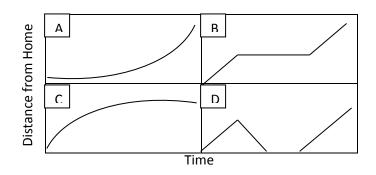
Name _____

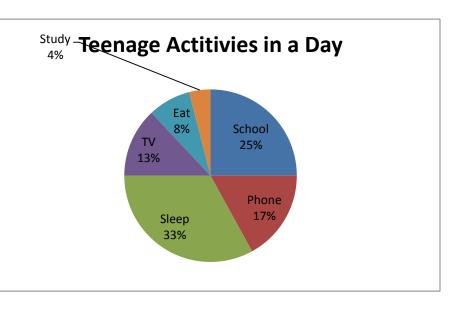
Smith Biology

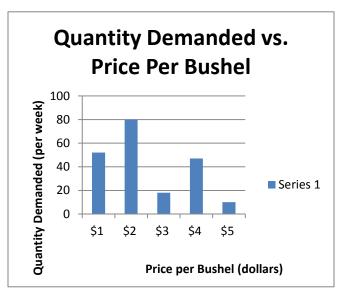
Practice #4

Background: Match each story on the left with the graph it represents on the right. Each graph compares the distance a car is from home compared to time.

- 1. I had just left home when I realized I had forgotten my books, so I went back to pick them up.
- _____2. The battery on my electric car started to run down.
- _____3. Things went fine until I had a flat tire.
- 4. I started out calmly, but sped up when I realized I was going to be late.


Practice Problem #5


Background: The pie chart shows the approximate percentages teenagers spend doing various activities in a day. Use the information in the pie chart to answer the questions below.


- 1. What percent of the day is spent watching TV? _____
- 2. How many hours are spent sleeping? _____
- 3. What activity takes up the least amount of time? _____
- 4. What activity takes up a quarter of the day?
- 5. What two activities take up 50% of the day? _____
- 6. What two activities take up 25% of the day?

Practice Problem #6

- 1. What is the dependent variable? _____
- 2. Does the price per bushel always increase with demand?
- 3. What is the quantity demanded when the price is \$5 per bushel? _____
- 4. What is the price per bushel when the quantity demanded is 80?

